Subfunctions and third order differential inequalities
نویسندگان
چکیده
منابع مشابه
Lyapunov–type Inequalities for Third–order Linear Differential Equations
In this paper, we obtain new Lyapunov-type inequalities for the third-order linear differential equation x′′′ + q(t)x = 0 . Our work provides the sharpest results in the literature and makes corrections to those in a recently published paper [1]. Based on the above, we further establish new Lyapunov-type inequalities for more general third-order linear differential equations. Moreover, by combi...
متن کاملLyapunov-type Inequalities for Third-order Linear Differential Equations
In this article, we establish new Lyapunov-type inequalities for third-order linear differential equations y′′′ + q(t)y = 0 under the three-point boundary conditions y(a) = y(b) = y(c) = 0 and y(a) = y′′(d) = y(b) = 0 by bounding Green’s functions G(t, s) corresponding to appropriate boundary conditions. Thus, we obtain the best constants of Lyapunov-type inequalities for three-point boundary v...
متن کاملλ-Symmetry method and the Prelle-Singer method for third-order differential equations
In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry method for third-order differential equations.In this paper, we will obtain first integral, integrating factor and λ-symmetry of third-order ODEs u ⃛=F(x,u,u ̇,u ̈). Also we compare Prelle -Singer (PS) method and λ-symmetry m...
متن کاملOscillation of Third-order Functional Differential Equations
The aim of this paper is to study oscillatory and asymptotic properties of the third-order nonlinear delay differential equation (E) ˆ a(t) ˆ x ′′(t) ̃ γ ̃ ′ + q(t)f(x [τ (t)]) = 0. Applying suitable comparison theorems we present new criteria for oscillation or certain asymptotic behavior of nonoscillatory solutions of (E). Obtained results essentially improve and complement earlier ones. Variou...
متن کاملLiouvillian solutions of third order differential equations
The Kovacic algorithm and its improvements give explicit formulae for the Liouvillian solutions of second order linear differential equations. Algorithms for third order differential equations also exist, but the tools they use are more sophisticated and the computations more involved. In this paper we refine parts of the algorithm to find Liouvillian solutions of third order equations. We show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1970
ISSN: 0022-0396
DOI: 10.1016/0022-0396(70)90044-6